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THE INFLUENCE OF THE CONCENTRATION
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OF WEAKLY INTERACTING DIPOLAR FLUIDS:
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SIMULATIONS
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Simulations of Brownian dynamics in dipolar hard spheres are used to investigate the
concentration range, in which theoretical models of the weak-field dynamic magnetic
response are valid, taking into account interparticle magnetic dipole-dipole correlations.

Introduction. Dynamic magnetic measurements (AC susceptometry) is a
widely used technique to characterize ferrofluids [1–5] and to study frequencies
and characteristic relaxation time scales of systems determined by the particle an-
isotropy, granulometric composition and magnetic phase concentration. Common
Debye-based [6] processing of experimental data fails to identify part of inter-
particle correlations in the dynamic magnetic response of concentrated ferrofluids,
because the Debye approach assumes that magnetic nanoparticles form an ideal
super paramagnetic “gas”. Several attempts [7–10] are known for incorporating
the interparticle interaction into theoretical considerations of the ferrofluid dy-
namic magnetic response. The interaction leads to an additional dependence of
the dynamic magnetic susceptibility on the ferroparticle concentration of higher
order than the Debye linear dependence. So, in this paper, we focuse on a rigorous
test of theoretical models against accurate computer-simulation results to clarify
the concentration range of validity of the models considered below.

1. Theory. We consider a dipolar hard sphere fluid (DHS) comprised of
identical dipole hard spheres of diameter d and point dipole m, placed at the
center of the particle. The numerical concentration of DHSs is indicated as n.
The system is characterized by two dimensionless parameters. The first one is
the volume fraction ϕ = πd3n/6, which is a part of the system volume occupied
by the bodies of all particles. The second one is the dipolar coupling constant
λ = µ0m

2/4πd3kBT , which is the characteristic energy µ0m
2/4πd3 of the magnetic

dipole-dipole interaction of two particles at close contact related to the thermal
energy kBT , and µ0 stands for the vacuum magnetic permeability. In the case of
a very low DHS concentration (ϕ → 0), the magnetic response of DHS to a weak
probing AC magnetic field is described by the well-known Debye expressions [6]
for the initial dynamic magnetic susceptibility χD = χ′

D
− iχ′′

D
:

χ′

D
(ω) =

χ
L

1 + (ωτ)2
, χ′′

D
(ω) =

χ
L
ωτ

1 + (ωτ)2
. (1)

Here, ω is the probing field circular frequency, τ has the meaning of the
characteristic relaxation time due to the Brownian rotation, and

χL =
µ0nm

2

3kBT
= 8λϕ
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stands for the Langevin static initial magnetic susceptibility of ideal paramagnetic
gas. Both the real (χ′

D
) and the imaginary (χ′′

D
) parts of the Debye susceptibility

are linearly proportional to the DHS concentration, so the phase shift ∆φD(ω) =
arctan [χ′′

D
(ω)/χ′

D
(ω)] = arctan(ωτ) is described by the universal concentration-

independent function.
For moderate concentrations, the Debye expressions are inapplicable, since,

even in the low-frequency limit, the static susceptibility grows more rapidly with
concentration than linearly (because χ

L
∼ ϕ) [11, 12]. The leading order correc-

tion, proportional to λϕ, to the ideal paramagnetic gas has been obtained in the
framework of the modified mean-field model of the first order (MMF1) [13], and
the static MMF1 susceptibility is

χMMF1 = χL (1 + χL/3) , (2)

which is of parabolic accuracy in the DHS concentration. A dynamic version of
the first order modified mean-filed model (DMMF1) has been recently developed
in [10, 14], and the dynamic susceptibility χ

DMMF1
= χ′

DMMF1
− iχ′′

DMMF1
was

expressed in terms of the Debye susceptibilities Eq. (1) as

χ′

DMMF1(ω) = χ′

D(ω) +
1

3

{

[χ′

D(ω)]
2
− [χ′′

D(ω)]
2
}

, (3)

χ′′

DMMF1(ω) = χ′′

D(ω)

[

1 +
2

3
χ′

D(ω)

]

, (4)

It is important to note that χ′

DMMF1
(0) = χ

MMF1
, and the parabolic term in the

DMMF1 susceptibility is the exact result of the perturbation method. Besides,
different approximations are worth mentioning [7–9]. These models yield the same
expressions for the linear dynamic magnetic response χZ = χ′

Z−iχ′′

Z first obtained
by Zubarev [7]:

χ′

Z(ω) =
χ
MMF1

1 + [ωτ(1 + χ
L
/3)]

2
, χ′′

Z(ω) =
χ
MMF1

ωτ(1 + χ
L
/3)

1 + [ωτ(1 + χ
L
/3)]

2
. (5)

These expressions coincide with the exact DMMF1 expressions Eqs. (3) and (4)
within an accuracy of ∼ χ2

L
.

2. Theories vs. BD simulations. To verify the models, we use the
Brownian dynamics simulation (BD) data published recently in [11]. The simula-
tion cell with 256 or 512 particles was a three-dimensional cubic box with periodic
boundary conditions applied. Long-range interactions were handled using the
Ewald sum with conducting boundary conditions. The susceptibility spectra were
calculated on the basis of the linear-response theory in terms of the inverse Fourier
transform over the time of the equilibrium (zero-field) magnetization autocorrela-
tion function. The simulations were performed for a DHS with the following values
of the Langevin susceptibility: χ

L
=0.42, 0.84, 1.26, 1.68, 2.09, 2.51. The corres-

ponding values of the volume fraction are ϕ=0.052, 0.105, 0.158, 0.210, 0.261,
0.314. For ideal systems, provided the interparticle dipole-dipole interaction is
switched off, the BD simulations give the data which are exactly coincident with
the Debye model (see Fig. 1).

The magnetic response of the DHS with interacting particles was studied for
the same volume fractions and Langevin susceptibilities, using the BD method de-
scribed above. The dipolar coupling constant was fixed, λ=1, so the interparticle
interaction should not be assumed strong. But even in this case of rather weak in-
teraction, the interparticle correlations influence the magnetic susceptibility giving
rise to its increase in the weak-frequency range (see Eq. (2)).
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Eq. (1)
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Fig. 1. Susceptibility spectra for noninteracting particles: symbols – BD simulations
data for different values of the static Langevin susceptibility χL (numbers in the legends),
curves – Debye susceptibilities (Eq. 1).
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Fig. 2. Susceptibility spectra of interacting particles with λ=1. The symbols are from
the BD simulations, the dotted lines are from the DMMF1 model (Eqs. 3), (4), the solid
lines are from Eqs. (5).

The susceptibility spectra χ′(ω) and χ′′(ω) of the interacting DHSs are presen-
ted in Fig. 2 for the volume fractions ϕ=0.158, 0.210, 0.261, 0.314. For lower con-
centrations, the difference between both models considered Eqs. (3), (4) and (5) is
negligible, and the agreement between the BD simulations and the theories is very
accurate. But with growing concentration (Fig. 2), the Zubarev’s model Eq. (5)
describes the simulation data much better than DMMF1. So, we may conclude
that the model Eq. (5) has a broader concentration range of applicability.
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Fig. 3. Parameters of the susceptibility spectra for the interacting DHS with λ=1:
the peak frequency ωmτ in χ′′; the coefficient A in Eq. (6); the coefficient B in Eq. (6).
The symbols are from the BD simulations; the dotted lines are from the DMMF1 model
Eqs. (7), (8); the solid lines are from Eq. (9).

The latter conclusion is much clearer in Fig. 3, where we plot the characteristic
parameters of the spectral curves. They are the position ωmτ of the maximum of
the imaginary susceptibility, the weak-frequency parabolic decrease coefficient A
of the real susceptibility and the coefficient B of the weak-frequency linear increase
of the imaginary susceptibility:

χ′(ω) ≈ χ(0)
[

1−A(ωτ)2
]

, χ′′(ω) ≈ BχLωτ. (6)

These parameters could be easily calculated for both models considered. They are

(ωmτ)DMMF1
=

[

(

1 +
2

3
χ
L
+ χ2

L

)1/2

− χ
L

]1/2

, (7)

ADMMF1 =
3 + 3χ

L

3 + χ
L

, BDMMF1 = 1 +
2

3
χ
L
, (8)

(ωmτ)Z =
3

3 + χ
L

, AZ = BZ =
(

1 +
χ
L

3

)2

. (9)

Fig. 3 (top) shows that the peak frequency ωm decreases monotonically with
increasing χ

L
(concentration) demonstrating the growing importance of collective

orientational dynamics. The coefficients A and B increase with χ
L
, and this beha-

vior is expectable due to the observed shift of the spectra towards lower frequencies
(Fig. 2). The DMMF1 approach includes only the leading-order correction to the
susceptibility of the order χ2

L
and, therefore, this model is valid only at rather low

concentrations. The model Eq. (5) predictions are very close to the BD data in
the whole studied concentration range.
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3. Conclusions.

• The concentration range of validity of two theoretical models for the mon-
odisperse DHS weak-field dynamic magnetic susceptibility was studied using
the BD simulations data.

• Three spectral characteristics are especially sensitive to the interparticle mag-
netic correlations: the low-frequency behavior of the real susceptibility, the
low-frequency growth of the imaginary susceptibility, and the maximum of
the imaginary part.

• The interparticle dipole-dipole interactions lead to an overall decrease of the
characteristic time scales for a given dipolar system on dilution.

• The model Eq. (5) [7] describes well the dynamic spectra of the weakly in-
teracting monodisperse DHS fluids in a wide range of concentrations, but the
application of this model to real ferrofluids is not convincible due to the fact
that only a monodisperse version of this model has been developed.
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